Difference between revisions of "Z80 Routines:Math:Square root"

From WikiTI
Jump to: navigation, search
(Add code for square root in max 379 t-states)
(Reorganized and added a few routines including 32-bit integer square root)
 
(2 intermediate revisions by the same user not shown)
Line 22: Line 22:
 
   ret </nowiki>
 
   ret </nowiki>
  
 +
== Small and Fast ==
  
==Speed Optimization==
+
This code was found on z80 bits and has the advantage of being both faster than all three versions above and smaller than the last two (it runs in under 720 T-states (under 640 if fully unrolled) and takes a mere 29 bytes). On the other hand it takes a somewhat unconventional input... It computes the square root of the 16bit number formed by la and places the result in d.
This version is an unrolled version of a square root algorithm taking at most 555 t-states. The downside is that it takes 111 bytes, but if speed is a priority, this is probably the best option. Most of the unrolled iterations are specially optimised for their location in the algorithm.
+
  <nowiki>
  <nowiki>;-------------------------------
+
sqrt_la:
;Square Root
+
ld de, 0040h ; 40h appends "01" to D
;Inputs:
+
ld h, d
;HL = number to be square rooted
+
;Outputs:
+
ld b, 7
;A  = square root
+
;111 bytes
+
; need to clear the carry beforehand
;555 t-states worst case
+
or a
SqrtHL:
+
;zero some registers
+
_loop:
xor a
+
sbc hl, de
ld c,a
+
jr nc, $+3
ld d,a
+
add hl, de
 
+
ccf
;move the LSB of the input into E for later use, then shift the LSB into L and load H with 0.
+
rl d
;H will be a carry register, where the bits in L are rotated in
+
ld e,l
+
ld l,h
+
ld h,c
+
 
+
;Iteration 1 is optimised
+
; C is treated as the accumulator
+
add hl,hl
+
add hl,hl
+
sub h
+
jr nc,$+5
+
inc c
+
cpl
+
ld h,a
+
 
+
;Iteration 2
+
; rotate in 2 more bits from the MSB of the input into H
+
add hl,hl
+
add hl,hl
+
; shift the accumulator
+
rl c
+
ld a,c
+
 
rla
 
rla
; A is now double the shifted accumulator
+
adc hl, hl
sub h
+
; doubles as a comparison of the carry register (H) to double the accumulator
+
jr nc,$+5
+
; If the carry is > 2*accumulator, the bit in the accumulator needs to be 1:
+
inc c
+
; We need to perform H-(2C+1), but A=2C-H.
+
; We could do NEG to get A=H-2C, then DEC A, but NEG = CPL \ INC A
+
; NEG \ DEC A  =  CPL \ INC A \ DEC A
+
; So just use CPL, saving 8 t-states, 1 byte
+
cpl
+
ld h,a
+
 
+
;Iteration 3
+
add hl,hl
+
add hl,hl
+
rl c
+
ld a,c
+
rla
+
sub h
+
jr nc,$+5
+
inc c
+
cpl
+
ld h,a
+
 
+
;Iteration 4
+
add hl,hl
+
add hl,hl
+
rl c
+
ld a,c
+
rla
+
sub h
+
jr nc,$+5
+
inc c
+
cpl
+
ld h,a
+
 
+
;L is 0, H is the current carry
+
;E is the lower 8 bits
+
; Load the next set of bits (LSB of input) into L so that they can be rotated into H
+
ld l,e
+
 
+
;Iteration 5
+
add hl,hl
+
add hl,hl
+
rl c
+
ld a,c
+
rla
+
sub h
+
jr nc,$+5
+
inc c
+
cpl
+
ld h,a
+
 
+
;Iteration 6
+
add hl,hl
+
add hl,hl
+
rl c
+
ld a,c
+
rla
+
sub h
+
jr nc,$+5
+
inc c
+
cpl
+
ld h,a
+
 
+
;Iteration 7
+
; Now we need to start worrying about 8 bit overflow.
+
; In particular, the carry register, H should be ideally 9 bits for this iteration, 10 for the last.
+
; The accumulator, C, is 8 bits, but we need to compare H to 2*C, and 2*C is up to 9 bits on the last iteration.
+
;l has 4 more bits to rotate into h
+
 
+
sla c \ ld a,c \ add a,a
+
add hl,hl
+
add hl,hl
+
jr nc,$+6
+
sub h \ jp $+6
+
sub h
+
jr nc,$+5
+
inc c
+
cpl
+
ld h,a
+
 
+
;Iteration 8
+
; A lot of fancy stuff here
+
; D is 0, from way back at the beginning
+
; now I put H->E so that DE can hold the potentially 10-bit number
+
; Now C->A, L->H
+
; H thus has the last two bits of the input that need to be rotated into DE
+
; L has the value of the accumualtor which needs to be multiplied by 4 for a comparison to DE
+
; So 2 shifts of HL into DE results in DE holding the carry, HL holding 4*accumulated result!
+
ld e,h
+
ld h,l
+
ld l,c
+
  ld a,l
+
add hl,hl \ rl e \ rl d
+
add hl,hl \ rl e \ rl d
+
sbc hl,de
+
;the c flag now has the state of the last bit of the result, HL does not need to be restored.
+
 
rla
 
rla
 +
adc hl, hl
 +
 +
djnz _loop
 +
 +
sbc hl, de ; optimised last iteration
 +
ccf
 +
rl d
 +
 
ret
 
ret
</nowiki>
+
</nowiki>
  
==Speed Optimization 2==
+
==Speed Optimization==
 
This 92 byte version is an optimized unrolled loop taking at most 379 t-states. Each iteration is optimized for its location in the algorithm.
 
This 92 byte version is an optimized unrolled loop taking at most 379 t-states. Each iteration is optimized for its location in the algorithm.
  
Line 272: Line 161:
 
</nowiki>
 
</nowiki>
  
==Balanced Optimization==
+
==Speed Optimization 2==
This version is a balance between speed and size. It also uses the high school method and runs under 1200 tstates. It only costs 41 bytes.
+
This version uses a slightly different approach to the same algorithm as the one above, but is smaller and faster (this one includes an RET at the end, contributing 10cc and 1 byte):
<nowiki>;-------------------------------
+
;Square Root
+
;Inputs:
+
;DE = number to be square rooted
+
;Outputs:
+
;A  = square root
+
  
Sqrt:
+
<nowiki>
    ld hl,0
+
; fast 16-bit isqrt by Zeda Thomas
    ld c,l
+
;Feel free to use for whatever :)
    ld b,h
+
    ld a,8
+
Sqrtloop:
+
    sla e
+
    rl d
+
    adc hl,hl
+
    sla e
+
    rl d
+
    adc hl,hl
+
    scf              ;Can be optimised
+
    rl c              ;with SL1 instruction
+
    rl b
+
    sbc hl,bc
+
    jr nc,Sqrtaddbit
+
    add hl,bc
+
    dec c
+
Sqrtaddbit:
+
    inc c
+
    res 0,c
+
    dec a
+
    jr nz,Sqrtloop
+
    ld a,c
+
    rr b
+
    rra
+
    ret</nowiki>
+
  
== Presumably the best ==
+
sqrtHL:
 +
;Input: HL
 +
;Output: A is the integer square root of HL
 +
;Destroys: HL,DE (D is actually 0)
 +
;min: 343cc
 +
;max: 380cc
 +
;avg: 361.5cc
 +
;88 bytes
 +
  ld de,05040h  ; 10
 +
  ld a,h        ; 4
 +
  sub e        ; 4
 +
  jr nc,sq7    ;\
 +
  add a,e      ; | branch 1: 12cc
 +
  ld d,16      ; | branch 2: 18cc
 +
sq7:            ;/
 +
 
 +
; ----------
 +
 
 +
  cp d          ; 4
 +
  jr c,sq6      ;\
 +
  sub d        ; | branch 1: 12cc
 +
  set 5,d      ; | branch 2: 19cc
 +
sq6:            ;/
 +
 
 +
; ----------
 +
  res 4,d      ; 8
 +
  srl d        ; 8
 +
  set 2,d      ; 8
 +
  cp d          ; 4
 +
  jr c,sq5      ;\
 +
  sub d        ; | branch 1: 12cc
 +
  set 3,d      ; | branch 2: 19cc
 +
sq5:            ;/
 +
  srl d        ; 8
 +
 
 +
; ----------
 +
 
 +
  inc a        ; 4
 +
  sub d        ; 4
 +
  jr nc,sq4    ;\
 +
  dec d        ; | branch 1: 12cc
 +
  add a,d      ; | branch 2: 19cc
 +
  dec d        ; | <-- this resets the low bit of D, so `srl d` resets carry.
 +
sq4:            ;/
 +
  srl d        ; 8
 +
  ld h,a        ; 4
 +
 
 +
; ----------
 +
 
 +
  ld a,e        ; 4
 +
  sbc hl,de    ; 15
 +
  jr nc,sq3    ;\
 +
  add hl,de    ; | 12cc or 18cc
 +
sq3:            ;/
 +
  ccf          ; 4
 +
  rra          ; 4
 +
  srl d        ; 8
 +
  rra          ; 4
 +
 
 +
; ----------
 +
 
 +
  ld e,a        ; 4
 +
  sbc hl,de    ; 15
 +
  jr c,sq2      ;\
 +
  or 20h        ; | branch 1: 23cc
 +
  db 254        ; |  <-- start of `cp *` which is 7cc to skip the next byte.
 +
sq2:            ; | branch 2: 21cc
 +
  add hl,de    ;/
 +
 
 +
  xor 18h      ; 7
 +
  srl d        ; 8
 +
  rra          ; 4
 +
 
 +
; ----------
 +
 
 +
  ld e,a        ; 4
 +
  sbc hl,de    ; 15
 +
  jr c,sq1      ;\
 +
  or 8          ; | branch 1: 23cc
 +
  db 254        ; |  <-- start of `cp *` which is 7cc to skip the next byte.
 +
sq1:            ; | branch 2: 21cc
 +
  add hl,de    ;/
 +
 
 +
  xor 6        ; 7
 +
  srl d        ; 8
 +
  rra          ; 4
 +
 
 +
; ----------
 +
 
 +
  ld e,a        ; 4
 +
  sbc hl,de    ; 15
 +
 
 +
;This code would restore the square root
 +
;  jr nc,sq0      ;\
 +
;  add hl,de    ; | 12cc or 18cc
 +
; sq0:            ;/
 +
 
 +
  sbc a,255    ; 7
 +
  srl d        ; 8
 +
  rra          ; 4
 +
  ret          ; 10
 +
</nowiki>
  
This code was found on z80 bits and has the advantage of being both faster than all three versions above and smaller than the last two (it runs in under 720 T-states (under 640 if fully unrolled) and takes a mere 29 bytes). On the other hand it takes a somewhat unconventionnal input... It computes the square root of the 16bit number formed by la and places the result in d.
+
==Speed Optimization, preserve remainder==
 +
This is essentially the same as the algorithm above, but with an optimized final step that preserves the remainder. The remainder is possibly useful for higher precision square roots.
 
  <nowiki>
 
  <nowiki>
sqrt_la:
+
;written by Zeda
ld de, 0040h ; 40h appends "01" to D
+
sqrtHL:
ld h, d
+
;returns A as the sqrt, HL as the remainder, D = 0
+
;min: 352cc
ld b, 7
+
;max: 391cc
+
;avg: 371.5cc
; need to clear the carry beforehand
+
 
or a
+
 
+
  ld de,05040h  ; 10
_loop:
+
  ld a,h       ; 4
sbc hl, de
+
  sub e        ; 4
jr nc, $+3
+
  jr nc,sq7    ;\
add hl, de
+
  add a,e      ; | branch 1: 12cc
ccf
+
  ld d,16      ; | branch 2: 18cc
rl d
+
sq7:            ;/
rla
+
 
adc hl, hl
+
; ----------
rla
+
 
adc hl, hl
+
  cp d          ; 4
+
  jr c,sq6      ;\
djnz _loop
+
  sub d        ; | branch 1: 12cc
+
  set 5,d      ; | branch 2: 19cc
sbc hl, de ; optimised last iteration
+
sq6:            ;/
ccf
+
 
rl d
+
; ----------
+
  res 4,d      ; 8
ret
+
  srl d        ; 8
 +
  set 2,d      ; 8
 +
  cp d          ; 4
 +
  jr c,sq5      ;\
 +
  sub d        ; | branch 1: 12cc
 +
  set 3,d      ; | branch 2: 19cc
 +
sq5:            ;/
 +
  srl d        ; 8
 +
 
 +
; ----------
 +
 
 +
  inc a        ; 4
 +
  sub d        ; 4
 +
  jr nc,sq4    ;\
 +
  dec d        ; | branch 1: 12cc
 +
  add a,d      ; | branch 2: 19cc
 +
  dec d        ; | <-- this resets the low bit of D, so `srl d` resets carry.
 +
sq4:            ;/
 +
  srl d        ; 8
 +
  ld h,a       ; 4
 +
 
 +
; ----------
 +
 
 +
  ld a,e        ; 4
 +
  sbc hl,de     ; 15
 +
  jr nc,sq3    ;\
 +
  add hl,de     ; | 12cc or 18cc
 +
sq3:            ;/
 +
  ccf           ; 4
 +
  rra          ; 4
 +
  srl d         ; 8
 +
  rra          ; 4
 +
 
 +
; ----------
 +
 
 +
  ld e,a        ; 4
 +
  sbc hl,de    ; 15
 +
  jr c,sq2      ;\
 +
  or 20h        ; | branch 1: 23cc
 +
  db 254        ; |  <-- start of `cp *` which is 7cc to skip the next byte.
 +
sq2:            ; | branch 2: 21cc
 +
  add hl,de    ;/
 +
 
 +
  xor 18h      ; 7
 +
  srl d        ; 8
 +
  rra          ; 4
 +
 
 +
; ----------
 +
 
 +
  ld e,a        ; 4
 +
  sbc hl,de    ; 15
 +
  jr c,sq1      ;\
 +
  or 8          ; | branch 1: 23cc
 +
  db 254        ; |  <-- start of `cp *` which is 7cc to skip the next byte.
 +
sq1:            ; | branch 2: 21cc
 +
  add hl,de    ;/
 +
 
 +
  xor 6        ; 7
 +
  srl d        ; 8
 +
  rra          ; 4
 +
 
 +
; ----------
 +
 
 +
  ld e,a        ; 4
 +
  sbc hl,de     ; 15
 +
  jr nc,+_      ;    \
 +
  add hl,de    ; 15  |
 +
  srl d         ; 8  |
 +
  rra          ; 4  | branch 1: 38cc
 +
  ret           ; 10  | branch 2: 40cc
 +
_:              ;    |
 +
  inc a        ; 4  |
 +
  srl d        ; 8  |
 +
  rra          ; 4  |
 +
  ret          ; 10 /
 
  </nowiki>
 
  </nowiki>
  
 +
==32-bit Square Root (unrolled)==
 +
This routine uses a ''remainder preserving'' 16-bit integer square root routine as a subroutine.
 +
<nowiki>
 +
;NOTE: This uses undocumented instructions `sll` (a.k.a. `slia`) and `ld a,ixh` and `ld a,ixl`
  
 +
sqrtHLIX:
 +
;Input: HLIX
 +
;Output: DE is the sqrt, AHL is the remainder
 +
;speed: 751+6{0,6}+{0,3+{0,18}}+{0,38}+sqrtHL
 +
;min: 1103
 +
;max: 1237
 +
;avg: 1165.5
 +
;166 bytes
 +
 +
  call sqrtHL  ;expects returns A as sqrt, HL as remainder, D = 0
 +
  add a,a
 +
  ld e,a
 +
  rl d
 +
 +
  ld a,ixh
 +
  sll e \ rl d
 +
  add a,a \ adc hl,hl
 +
  add a,a \ adc hl,hl
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  .db $FE    ;start of `cp *`
 +
_:
 +
  inc e
 +
 +
  sll e \ rl d
 +
  add a,a \ adc hl,hl
 +
  add a,a \ adc hl,hl
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  .db $FE    ;start of `cp *`
 +
_:
 +
  inc e
 +
 +
  sll e \ rl d
 +
  add a,a \ adc hl,hl
 +
  add a,a \ adc hl,hl
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  .db $FE    ;start of `cp *`
 +
_:
 +
  inc e
 +
 +
  sll e \ rl d
 +
  add a,a \ adc hl,hl
 +
  add a,a \ adc hl,hl
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  .db $FE    ;start of `cp *`
 +
_:
 +
  inc e
 +
 +
;Now we have four more iterations
 +
;The first two are no problem
 +
  ld a,ixl
 +
  sll e \ rl d
 +
  add a,a \ adc hl,hl
 +
  add a,a \ adc hl,hl
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  .db $FE    ;start of `cp *`
 +
_:
 +
  inc e
 +
 +
  sll e \ rl d
 +
  add a,a \ adc hl,hl
 +
  add a,a \ adc hl,hl
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  .db $FE    ;start of `cp *`
 +
_:
 +
  inc e
 +
 +
sqrt32_iter15:
 +
;On the next iteration, HL might temporarily overflow by 1 bit
 +
  sll e \ rl d      ;sla e \ rl d \ inc e
 +
  add a,a
 +
  adc hl,hl
 +
  add a,a
 +
  adc hl,hl      ;This might overflow!
 +
  jr c,sqrt32_iter15_br0
 +
;
 +
  sbc hl,de
 +
  jr nc,+_
 +
  add hl,de
 +
  dec e
 +
  jr sqrt32_iter16
 +
sqrt32_iter15_br0:
 +
  or a
 +
  sbc hl,de
 +
_:
 +
  inc e
 +
 +
;On the next iteration, HL is allowed to overflow, DE could overflow with our current routine, but it needs to be shifted right at the end, anyways
 +
sqrt32_iter16:
 +
  add a,a
 +
  ld b,a        ;either 0x00 or 0x80
 +
  adc hl,hl
 +
  rla
 +
  adc hl,hl
 +
  rla
 +
;AHL - (DE+DE+1)
 +
  sbc hl,de \ sbc a,b
 +
  inc e
 +
  or a
 +
  sbc hl,de \ sbc a,b
 +
  ret p
 +
  add hl,de
 +
  adc a,b
 +
  dec e
 +
  add hl,de
 +
  adc a,b
 +
  ret
 +
</nowiki>
 
==Other Options==
 
==Other Options==
 
A binary search of a square table would yield much better best case scenarios and the worst case scenarios would be similar to the high school method. However this would also require 512 byte table making it significantly larger than the other routines.  Of course the table could also serve as a rapid squaring method.
 
A binary search of a square table would yield much better best case scenarios and the worst case scenarios would be similar to the high school method. However this would also require 512 byte table making it significantly larger than the other routines.  Of course the table could also serve as a rapid squaring method.
Line 350: Line 513:
 
* '''James Montelongo'''
 
* '''James Montelongo'''
 
* '''Milos "baze" Bazelides''' (or possibly one of the contributor of [http://baze.au.com/misc/z80bits.html z80bits])
 
* '''Milos "baze" Bazelides''' (or possibly one of the contributor of [http://baze.au.com/misc/z80bits.html z80bits])
* '''John Metcalf''' (Speed Optimization 2 from [https://github.com/impomatic/z80snippets/blob/master/fastisqr.asm z80snippets])
+
* '''John Metcalf''' (Speed Optimization [https://github.com/impomatic/z80snippets/blob/master/fastisqr.asm z80snippets])
 +
* '''Zeda Thomas''' ([https://github.com/Zeda/Z80-Optimized-Routines/blob/master/math/squareroot Z80 Optimized Routines])

Latest revision as of 15:00, 30 September 2019


Size Optimization

This version is size optimized, it compares every perfect square against HL until a square that is larger is found. Obviously slower, but does get the job done in only 12 bytes.

;-------------------------------
;Square Root
;Inputs:
;HL = number to be square rooted
;Outputs:
;A  = square root

sqrt:
   ld a,$ff
   ld de,1
sqrtloop:
   inc a
   dec e
   dec de
   add hl,de
   jr c,sqrtloop
   ret 

Small and Fast

This code was found on z80 bits and has the advantage of being both faster than all three versions above and smaller than the last two (it runs in under 720 T-states (under 640 if fully unrolled) and takes a mere 29 bytes). On the other hand it takes a somewhat unconventional input... It computes the square root of the 16bit number formed by la and places the result in d.

sqrt_la:
	ld	de, 0040h	; 40h appends "01" to D
	ld	h, d
	
	ld	b, 7
	
	; need to clear the carry beforehand
	or	a
	
_loop:
	sbc	hl, de
	jr	nc, $+3
	add	hl, de
	ccf
	rl	d
	rla
	adc	hl, hl
	rla
	adc	hl, hl
	
	djnz	_loop
	
	sbc	hl, de		; optimised last iteration
	ccf
	rl	d
	
	ret
 

Speed Optimization

This 92 byte version is an optimized unrolled loop taking at most 379 t-states. Each iteration is optimized for its location in the algorithm.

; fast 16 bit isqrt by John Metcalf
; 92 bytes, 344-379 cycles (average 362)
; v2 - saved 3 cycles with a tweak suggested by Russ McNulty

; call with hl = number to square root
; returns    a = square root
; corrupts hl, de

; ----------

  ld a,h        ; 4
  ld de,0B0C0h  ; 10
  add a,e       ; 4
  jr c,sq7      ; 12 / 7
  ld a,h        ; 4
  ld d,0F0h     ; 7
sq7:

; ----------

  add a,d       ; 4
  jr nc,sq6     ; 12 / 7
  res 5,d       ; 8
  db 254        ; 7
sq6:
  sub d         ; 4
  sra d         ; 8

; ----------

  set 2,d       ; 8
  add a,d       ; 4
  jr nc,sq5     ; 12 / 7
  res 3,d       ; 8
  db 254        ; 7
sq5:
  sub d         ; 4
  sra d         ; 8

; ----------

  inc d         ; 4
  add a,d       ; 4
  jr nc,sq4     ; 12 / 7
  res 1,d       ; 8
  db 254        ; 7
sq4:
  sub d         ; 4
  sra d         ; 8
  ld h,a        ; 4

; ----------

  add hl,de     ; 11
  jr nc,sq3     ; 12 / 7
  ld e,040h     ; 7
  db 210        ; 10
sq3:
  sbc hl,de     ; 15
  sra d         ; 8
  ld a,e        ; 4
  rra           ; 4

; ----------

  or 010h       ; 7
  ld e,a        ; 4
  add hl,de     ; 11
  jr nc,sq2     ; 12 / 7
  and 0DFh      ; 7
  db 218        ; 10
sq2:
  sbc hl,de     ; 15
  sra d         ; 8
  rra           ; 4

; ----------

  or 04h        ; 7
  ld e,a        ; 4
  add hl,de     ; 11
  jr nc,sq1     ; 12 / 7
  and 0F7h      ; 7
  db 218        ; 10
sq1:
  sbc hl,de     ; 15
  sra d         ; 8
  rra           ; 4

; ----------

  inc a         ; 4
  ld e,a        ; 4
  add hl,de     ; 11
  jr nc,sq0     ; 12 / 7
  and 0FDh      ; 7
sq0:
  sra d         ; 8
  rra           ; 4
  cpl           ; 4

Speed Optimization 2

This version uses a slightly different approach to the same algorithm as the one above, but is smaller and faster (this one includes an RET at the end, contributing 10cc and 1 byte):

; fast 16-bit isqrt by Zeda Thomas
;Feel free to use for whatever :)

sqrtHL:
;Input: HL
;Output: A is the integer square root of HL
;Destroys: HL,DE (D is actually 0)
;min: 343cc
;max: 380cc
;avg: 361.5cc
;88 bytes
  ld de,05040h  ; 10
  ld a,h        ; 4
  sub e         ; 4
  jr nc,sq7     ;\
  add a,e       ; | branch 1: 12cc
  ld d,16       ; | branch 2: 18cc
sq7:            ;/

; ----------

  cp d          ; 4
  jr c,sq6      ;\
  sub d         ; | branch 1: 12cc
  set 5,d       ; | branch 2: 19cc
sq6:            ;/

; ----------
  res 4,d       ; 8
  srl d         ; 8
  set 2,d       ; 8
  cp d          ; 4
  jr c,sq5      ;\
  sub d         ; | branch 1: 12cc
  set 3,d       ; | branch 2: 19cc
sq5:            ;/
  srl d         ; 8

; ----------

  inc a         ; 4
  sub d         ; 4
  jr nc,sq4     ;\
  dec d         ; | branch 1: 12cc
  add a,d       ; | branch 2: 19cc
  dec d         ; | <-- this resets the low bit of D, so `srl d` resets carry.
sq4:            ;/
  srl d         ; 8
  ld h,a        ; 4

; ----------

  ld a,e        ; 4
  sbc hl,de     ; 15
  jr nc,sq3     ;\
  add hl,de     ; | 12cc or 18cc
sq3:            ;/
  ccf           ; 4
  rra           ; 4
  srl d         ; 8
  rra           ; 4

; ----------

  ld e,a        ; 4
  sbc hl,de     ; 15
  jr c,sq2      ;\
  or 20h        ; | branch 1: 23cc
  db 254        ; |   <-- start of `cp *` which is 7cc to skip the next byte.
sq2:            ; | branch 2: 21cc
  add hl,de     ;/

  xor 18h       ; 7
  srl d         ; 8
  rra           ; 4

; ----------

  ld e,a        ; 4
  sbc hl,de     ; 15
  jr c,sq1      ;\
  or 8          ; | branch 1: 23cc
  db 254        ; |   <-- start of `cp *` which is 7cc to skip the next byte.
sq1:            ; | branch 2: 21cc
  add hl,de     ;/

  xor 6         ; 7
  srl d         ; 8
  rra           ; 4

; ----------

  ld e,a        ; 4
  sbc hl,de     ; 15

;This code would restore the square root
;   jr nc,sq0      ;\
;   add hl,de     ; | 12cc or 18cc
; sq0:            ;/

  sbc a,255     ; 7
  srl d         ; 8
  rra           ; 4
  ret           ; 10
 

Speed Optimization, preserve remainder

This is essentially the same as the algorithm above, but with an optimized final step that preserves the remainder. The remainder is possibly useful for higher precision square roots.

;written by Zeda
sqrtHL:
;returns A as the sqrt, HL as the remainder, D = 0
;min: 352cc
;max: 391cc
;avg: 371.5cc


  ld de,05040h  ; 10
  ld a,h        ; 4
  sub e         ; 4
  jr nc,sq7     ;\
  add a,e       ; | branch 1: 12cc
  ld d,16       ; | branch 2: 18cc
sq7:            ;/

; ----------

  cp d          ; 4
  jr c,sq6      ;\
  sub d         ; | branch 1: 12cc
  set 5,d       ; | branch 2: 19cc
sq6:            ;/

; ----------
  res 4,d       ; 8
  srl d         ; 8
  set 2,d       ; 8
  cp d          ; 4
  jr c,sq5      ;\
  sub d         ; | branch 1: 12cc
  set 3,d       ; | branch 2: 19cc
sq5:            ;/
  srl d         ; 8

; ----------

  inc a         ; 4
  sub d         ; 4
  jr nc,sq4     ;\
  dec d         ; | branch 1: 12cc
  add a,d       ; | branch 2: 19cc
  dec d         ; | <-- this resets the low bit of D, so `srl d` resets carry.
sq4:            ;/
  srl d         ; 8
  ld h,a        ; 4

; ----------

  ld a,e        ; 4
  sbc hl,de     ; 15
  jr nc,sq3     ;\
  add hl,de     ; | 12cc or 18cc
sq3:            ;/
  ccf           ; 4
  rra           ; 4
  srl d         ; 8
  rra           ; 4

; ----------

  ld e,a        ; 4
  sbc hl,de     ; 15
  jr c,sq2      ;\
  or 20h        ; | branch 1: 23cc
  db 254        ; |   <-- start of `cp *` which is 7cc to skip the next byte.
sq2:            ; | branch 2: 21cc
  add hl,de     ;/

  xor 18h       ; 7
  srl d         ; 8
  rra           ; 4

; ----------

  ld e,a        ; 4
  sbc hl,de     ; 15
  jr c,sq1      ;\
  or 8          ; | branch 1: 23cc
  db 254        ; |   <-- start of `cp *` which is 7cc to skip the next byte.
sq1:            ; | branch 2: 21cc
  add hl,de     ;/

  xor 6         ; 7
  srl d         ; 8
  rra           ; 4

; ----------

  ld e,a        ; 4
  sbc hl,de     ; 15
  jr nc,+_      ;    \
  add hl,de     ; 15  |
  srl d         ; 8   |
  rra           ; 4   | branch 1: 38cc
  ret           ; 10  | branch 2: 40cc
_:              ;     |
  inc a         ; 4   |
  srl d         ; 8   |
  rra           ; 4   |
  ret           ; 10 /
 

32-bit Square Root (unrolled)

This routine uses a remainder preserving 16-bit integer square root routine as a subroutine.

;NOTE: This uses undocumented instructions `sll` (a.k.a. `slia`) and `ld a,ixh` and `ld a,ixl`

sqrtHLIX:
;Input: HLIX
;Output: DE is the sqrt, AHL is the remainder
;speed: 751+6{0,6}+{0,3+{0,18}}+{0,38}+sqrtHL
;min: 1103
;max: 1237
;avg: 1165.5
;166 bytes

  call sqrtHL   ;expects returns A as sqrt, HL as remainder, D = 0
  add a,a
  ld e,a
  rl d

  ld a,ixh
  sll e \ rl d
  add a,a \ adc hl,hl
  add a,a \ adc hl,hl
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  .db $FE     ;start of `cp *`
_:
  inc e

  sll e \ rl d
  add a,a \ adc hl,hl
  add a,a \ adc hl,hl
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  .db $FE     ;start of `cp *`
_:
  inc e

  sll e \ rl d
  add a,a \ adc hl,hl
  add a,a \ adc hl,hl
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  .db $FE     ;start of `cp *`
_:
  inc e

  sll e \ rl d
  add a,a \ adc hl,hl
  add a,a \ adc hl,hl
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  .db $FE     ;start of `cp *`
_:
  inc e

;Now we have four more iterations
;The first two are no problem
  ld a,ixl
  sll e \ rl d
  add a,a \ adc hl,hl
  add a,a \ adc hl,hl
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  .db $FE     ;start of `cp *`
_:
  inc e

  sll e \ rl d
  add a,a \ adc hl,hl
  add a,a \ adc hl,hl
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  .db $FE     ;start of `cp *`
_:
  inc e

sqrt32_iter15:
;On the next iteration, HL might temporarily overflow by 1 bit
  sll e \ rl d      ;sla e \ rl d \ inc e
  add a,a
  adc hl,hl
  add a,a
  adc hl,hl       ;This might overflow!
  jr c,sqrt32_iter15_br0
;
  sbc hl,de
  jr nc,+_
  add hl,de
  dec e
  jr sqrt32_iter16
sqrt32_iter15_br0:
  or a
  sbc hl,de
_:
  inc e

;On the next iteration, HL is allowed to overflow, DE could overflow with our current routine, but it needs to be shifted right at the end, anyways
sqrt32_iter16:
  add a,a
  ld b,a        ;either 0x00 or 0x80
  adc hl,hl
  rla
  adc hl,hl
  rla
;AHL - (DE+DE+1)
  sbc hl,de \ sbc a,b
  inc e
  or a
  sbc hl,de \ sbc a,b
  ret p
  add hl,de
  adc a,b
  dec e
  add hl,de
  adc a,b
  ret
 

Other Options

A binary search of a square table would yield much better best case scenarios and the worst case scenarios would be similar to the high school method. However this would also require 512 byte table making it significantly larger than the other routines. Of course the table could also serve as a rapid squaring method.

Credits and Contributions