User:CoBB

From WikiTI
Revision as of 01:49, 7 March 2006 by CoBB (Talk | contribs)

Jump to: navigation, search

About this page

Ez az én kis játszóterem.

Z80 instruction set

Reference

Instruction Opcode Time S Z X H Y P N C Effect
adc a,R 10001rrr 4 + + + + + V 0 + a += R + cf
adc a,J 11i11101 1000110b 8 + + + + + V 0 + a += J + cf
adc a,N 11001110 nnnnnnnn 7 + + + + + V 0 + a += N + cf
adc a,(hl) 10001110 7 + + + + + V 0 + a += (hl) + cf
adc a,(I+D) 11i11101 10001110 dddddddd 19 + + + + + V 0 + a += (I+D) + cf
adc hl,Q 11101101 01qq1010 15 + + + + + V 0 + hl += Q + cf
add a,R 10000rrr 4 + + + + + V 0 + a += R
add a,J 11i11101 1000010b 8 + + + + + V 0 + a += J
add a,N 11000110 nnnnnnnn 7 + + + + + V 0 + a += N
add a,(hl) 10000110 7 + + + + + V 0 + a += (hl)
add a,(I+D) 11i11101 10000110 dddddddd 19 + + + + + V 0 + a += (I+D)
add hl,Q 00qq1001 11 - - + + + - 0 + hl += Q
add I,Q 11i11101 00qq1001 15 - - + + + - 0 + I += Q
and R 10100rrr 4 + + + 1 + P 0 0 a := a AND R
and J 11i11101 1010010b 8 + + + 1 + P 0 0 a := a AND J
and N 11100110 nnnnnnnn 7 + + + 1 + P 0 0 a := a AND N
and (hl) 10100110 7 + + + 1 + P 0 0 a := a AND (hl)
and (I+D) 11i11101 10100110 dddddddd 19 + + + 1 + P 0 0 a := a AND (I+D)
bit B,R 11001011 01bbbrrr 8 + + + 1 + P 0 - tmp := R AND [1 << B]
bit B,(hl) 11001011 01bbb110 12 + + X 1 X P 0 - tmp := (hl) AND [1 << B],
xf := memptr.13, yf := memptr.11
bit B,(I+D) 11i11101 11001011 dddddddd 01bbb*** 20 + + X 1 X P 0 - tmp := (I+D) AND [1 << B],
xf := [I+D].13, yf := [I+D].11
call A 11001101 alalalal ahahahah 17 - - - - - - - - sp -= 2, (sp) := pc, pc := A
call C,A 11ccc100 alalalal ahahahah 17/10 - - - - - - - - if C then sp -= 2, (sp) := pc, pc := A
ccf 00111111 4 - - A X A - 0 X hf := cf, cf := ~cf
cp R 10111rrr 4 + + X + X V 1 + tmp := a - R, xf := R.5, yf = R.3
cp J 11i11101 1011110b 8 + + X + X V 1 + tmp := a - J, xf := J.5, yf = J.3
cp N 11111110 nnnnnnnn 7 + + X + X V 1 + tmp := a - N, xf := N.5, yf = N.3
cp (hl) 10111110 7 + + X + X V 1 + tmp := a - (hl), xf := (hl).5, yf = (hl).3
cp (I+D) 11i11101 10111110 dddddddd 19 + + X + X V 1 + tmp := a - (I+D), xf := (I+D).5, yf = (I+D).3
cpd 11101101 10101001 16 + + X + X C 1 - tmp := a - (hl) => flags, bc -= 1, hl -= 1,
xf := [tmp - hf].1, yf = [tmp - hf].3
cpdr 11101101 10111001 21/16 + + X + X C 1 - cpd, if bc <> 0 and nz then pc -= 2
cpi 11101101 10100001 16 + + X + X C 1 - tmp := a - (hl) => flags, bc -= 1, hl += 1,
xf := [tmp - hf].1, yf = [tmp - hf].3
cpir 11101101 10110001 21/16 + + X + X C 1 - cpi, if bc <> 0 and nz then pc -= 2
cpl 00101111 4 - - + 1 + - 1 - a := ~a
daa 00100111 4 + + + X + P - X tmp := a,
if nf then
 if hf or [a AND 0x0f > 9] then tmp -= 0x06
 if cf or [a > 0x99] then tmp -= 0x60
else
 if hf or [a AND 0x0f > 9] then tmp += 0x06
 if cf or [a > 0x99] then tmp += 0x60
endif,
tmp => flags, cf := cf OR [a > 0x99],
hf := a.4 XOR tmp.4, a := tmp
dec R 00rrr101 4 + + + + + V 1 - R -= 1
dec J 11i11101 0010b101 8 + + + + + V 1 - J -= 1
dec (hl) 00110101 11 + + + + + V 1 - (hl) -= 1
dec (I+D) 11i11101 00110101 dddddddd 19 + + + + + V 1 - (I+D) -= 1
dec Q 00qq1011 6 - - - - - - - - Q -= 1
dec I 11i11101 00101011 10 - - - - - - - - I -= 1
di 11110011 4 - - - - - - - - iff1 := 0, iff2 := 0
djnz E 00010000 dddddddd 13/8 - - - - - - - - b -= 1, if b <> 0 then pc := E
ei 11111011 4 - - - - - - - - iff1 := 1, iff2 := 1 after the next instruction
ex (sp),hl 11100011 19 - - - - - - - - (sp) <=> hl
ex (sp),I 11i11101 11100011 23 - - - - - - - - (sp) <=> I
ex af,af' 00001000 4 X X X X X X X X af <=> af'
ex de,hl 11101011 4 - - - - - - - - de <=> hl
exx 11011001 4 - - - - - - - - bc, de, hl <=> bc', de', hl'
halt 01110110 4 - - - - - - - - wait for interrupt
im 0 11101101 01*0*110 8 - - - - - - - - mode 0: execute instruction on bus
im 1 11101101 01*10110 8 - - - - - - - - mode 1: execute rst $38
im 2 11101101 01*11110 8 - - - - - - - - mode 2: call (i * 256 + byte on bus)
in a,(N) 11011011 nnnnnnnn 11 - - - - - - - - a := ((N))
in R,(c) 11101101 01rrr000 12 + + + 0 + P 0 - R := ((c))
in f,(c) 11101101 01110000 12 + + + 0 + P 0 - tmp := ((c))
inc R 00rrr100 4 + + + + + V 0 - R += 1
inc J 11i11101 0010b100 8 + + + + + V 0 - J += 1
inc (hl) 00110100 11 + + + + + V 0 - (hl) += 1
inc (I+D) 11i11101 00110100 dddddddd 23 + + + + + V 0 - (I+D) += 1
inc Q 00qq0011 6 - - - - - - - - Q += 1
inc I 11i11101 00100011 10 - - - - - - - - I += 1
ind 11101101 10101010 16 + + + X + X X X tmp := ((c)), (hl) := tmp, hl -= 1,
b -= 1 => flags, nf := tmp.7,
tmp2 = tmp + [[c - 1] AND 0xff],
pf := parity of [[tmp2 AND 0x07] XOR b],
hf := cf := tmp2 > 255
indr 11101101 10111010 21/16 + + + X + X X X ind, if b <> 0 then pc -= 2
ini 11101101 10100010 16 + + + X + X X X tmp := ((c)), (hl) := tmp, hl += 1,
b -= 1 => flags, nf := tmp.7,
tmp2 := tmp + [[c + 1] AND 0xff],
pf := parity of [[tmp2 AND 0x07] XOR b],
hf := cf := tmp2 > 255
inir 11101101 10110010 21/16 + + + X + X X X ini, if b <> 0 then pc -= 2
jp A 11000011 alalalal ahahahah 10 - - - - - - - - pc := A
jp (hl) 11101001 4 - - - - - - - - pc := hl
jp (I) 11i11101 11101001 8 - - - - - - - - pc := I
jp C,A 11ccc010 alalalal ahahahah 10 - - - - - - - - if C then pc := A
jr E 00011000 dddddddd 12 - - - - - - - - pc := E
jr nz,E 00100000 dddddddd 12/7 - - - - - - - - if nz then pc := E
jr z,E 00101000 dddddddd 12/7 - - - - - - - - if zf then pc := E
jr nc,E 00110000 dddddddd 12/7 - - - - - - - - if nc then pc := E
jr c,E 00111000 dddddddd 12/7 - - - - - - - - if cf then pc := E
ld R1,R2 01rrrsss 4 - - - - - - - - R1 := R2
ld R,J 11i11101 01rrr10b 8 - - - - - - - - R := J
ld J,R 11i11101 0110brrr 8 - - - - - - - - J := R
ld ixh,ixl 11011101 01100101 8 - - - - - - - - ixh := ixl
ld ixl,ixh 11011101 01101100 8 - - - - - - - - ixl := ixh
ld iyh,iyl 11111101 01100101 8 - - - - - - - - iyh := iyl
ld iyl,iyh 11111101 01101100 8 - - - - - - - - iyl := iyh
ld R,N 00rrr110 nnnnnnnn 7 - - - - - - - - R := N
ld R,(hl) 01rrr110 7 - - - - - - - - R := (hl)
ld R,(I+D) 11i11101 01rrr110 dddddddd 19 - - - - - - - - R := (I+D)
ld (hl),R 01110rrr 7 - - - - - - - - (hl) := R
ld (hl),N 00110110 nnnnnnnn 10 - - - - - - - - (hl) := N
ld (I+D),R 11i11101 01110rrr dddddddd 19 - - - - - - - - (I+D) := R
ld (I+D),N 11i11101 00110110 dddddddd nnnnnnnn 19 - - - - - - - - (I+D) := N
ld a,(bc) 00001010 7 - - - - - - - - a := (bc)
ld a,(de) 00011010 7 - - - - - - - - a := (de)
ld a,(A) 00111010 alalalal ahahahah 13 - - - - - - - - a := (A)
ld (bc),a 00000010 7 - - - - - - - - (bc) := a
ld (de),a 00010010 7 - - - - - - - - (de) := a
ld (A),a 00110010 alalalal ahahahah 13 - - - - - - - - (A) := a
ld i,a 11101101 01000111 9 - - - - - - - - i := a
ld r,a 11101101 01001111 9 - - - - - - - - r := a
ld a,i 11101101 01010111 9 + + + 0 + X 0 - a := i, pf := iff2
ld a,r 11101101 01011111 9 + + + 0 + X 0 - a := r, pf := iff2
ld Q,A 00qq0001 alalalal ahahahah 10 - - - - - - - - Q := A
ld I,A 11i11101 00100001 alalalal ahahahah 14 - - - - - - - - I := A
ld Q,(A) 11101101 01qq1011 alalalal ahahahah 20 - - - - - - - - Q := (A) [Q shouldn't be hl, see below]
ld hl,(A) 00101010 alalalal ahahahah 20 - - - - - - - - hl := (A)
ld I,(A) 11i11101 00101010 alalalal ahahahah 20 - - - - - - - - I := (A)
ld (A),Q 11101101 01qq0011 alalalal ahahahah 20 - - - - - - - - (A) := Q [Q shouldn't be hl, see below]
ld (A),hl 00100010 alalalal ahahahah 20 - - - - - - - - (A) := hl
ld (A),I 11i11101 00100010 alalalal ahahahah 20 - - - - - - - - (A) := I
ld sp,hl 11111001 6 - - - - - - - - sp := hl
ld sp,I 11i11101 11111001 10 - - - - - - - - sp := I
ldd 11101101 10101000 16 - - X 0 X C 0 - tmp := (hl), (de) := tmp, de -= 1, hl -= 1,
bc -= 1, xf := [tmp + a].1, yf = [tmp + a].3
lddr 11101101 10111000 21/16 - - X 0 X C 0 - ldd, if bc <> 0 then pc -= 2
ldi 11101101 10100000 16 - - X 0 X C 0 - tmp := (hl), (de) := tmp, de += 1, hl += 1,
bc -= 1, xf := [tmp + a].1, yf = [tmp + a].3
ldir 11101101 10110000 21/16 - - X 0 X C 0 - ldi, if bc <> 0 then pc -= 2
neg 11101101 01***100 8 + + + + + V 1 + a := 0 - a
nop 00000000 4 - - - - - - - - nothing
or R 10110rrr 4 + + + 0 + P 0 0 a := a OR R
or J 11i11101 1011010b 8 + + + 0 + P 0 0 a := a OR J
or N 11110110 nnnnnnnn 7 + + + 0 + P 0 0 a := a OR N
or (hl) 10110110 7 + + + 0 + P 0 0 a := a OR (hl)
or (I+D) 11i11101 10110110 dddddddd 19 + + + 0 + P 0 0 a := a OR (I+D)
out (N),a 11010011 nnnnnnnn 11 - - - - - - - - ((N)) := a
out (c),R 11101101 01rrr001 12 - - - - - - - - ((c)) := R
out (c),0 11101101 01110001 12 - - - - - - - - ((c)) := ? (seems to vary with CPU)
outd 11101101 10101011 16 + + + X + X X X tmp := (hl), ((c)) := tmp, hl -= 1,
b -= 1 => flags, nf := tmp.7, tmp2 = tmp + l,
pf := parity of [[tmp2 AND 0x07] XOR b],
hf := cf := tmp2 > 255
otdr 11101101 10111011 21/16 + + + X + X X X outd, if b <> 0 then pc -= 2
outi 11101101 10100011 16 + + + X + X X X tmp := (hl), ((c)) := tmp, hl += 1,
b -= 1 => flags, nf := tmp.7, tmp2 = tmp + l,
pf := parity of [[tmp2 AND 0x07] XOR b],
hf := cf := tmp2 > 255
otir 11101101 10110011 21/16 + + + X + X X X outi, if b <> 0 then pc -= 2
pop P 11pp0001 10 - - - - - - - - P := (sp), sp += 2
pop I 11i11101 11100001 14 - - - - - - - - I := (sp), sp += 2
push P 11pp0101 11 - - - - - - - - sp -= 2, (sp) := P
push I 11i11101 11100101 15 - - - - - - - - sp -= 2, (sp) := I
res B,R 11001011 10bbbrrr 8 - - - - - - - - R := R AND ~[1 << B]
res B,(hl) 11001011 10bbb110 15 - - - - - - - - (hl) := (hl) AND ~[1 << B]
res B,(I+D) 11i11101 11001011 dddddddd 10bbb110 23 - - - - - - - - (I+D) := (I+D) AND ~[1 << B]
res B,(I+D)->R 11i11101 11001011 dddddddd 10bbbrrr 23 - - - - - - - - (I+D) := R := (I+D) AND ~[1 << B]
ret 11001001 10 - - - - - - - - pc := (sp), sp += 2
ret C 11ccc000 11/5 - - - - - - - - if C then pc := (sp), sp += 2
reti 11101101 01**1101 14 - - - - - - - - pc := (sp), sp += 2, iff1 := iff2
retn 11101101 01**0101 14 - - - - - - - - pc := (sp), sp += 2, iff1 := iff2
rla 00010111 4 - - + 0 + - 0 X ocf := cf, cf := a.7, a := [a << 1] + ocf
rl R 11001011 00010rrr 8 + + + 0 + P 0 X ocf := cf, cf := R.7, R := [R << 1] + ocf
rl (hl) 11001011 00010110 15 + + + 0 + P 0 X ocf := cf, cf := (hl).7, (hl) := [(hl) << 1] + ocf
rl (I+D) 11i11101 11001011 dddddddd 00010110 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).7,
(I+D) := [(I+D) << 1] + ocf
rl (I+D)->R 11i11101 11001011 dddddddd 00010rrr 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).7,
(I+D) := R := [(I+D) << 1] + ocf
rlca 00000111 4 - - + 0 + - 0 X cf := a.7, a := [a << 1] + cf
rlc R 11001011 00000rrr 8 + + + 0 + P 0 X cf := R.7, R := [R << 1] + cf
rlc (hl) 11001011 00000110 15 + + + 0 + P 0 X cf := (hl).7, (hl) := [(hl) << 1] + cf
rlc (I+D) 11i11101 11001011 dddddddd 00000110 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := [(I+D) << 1] + cf
rlc (I+D)->R 11i11101 11001011 dddddddd 00000rrr 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := R := [(I+D) << 1] + cf
rld 11101101 01101111 18 + + + 0 + P 0 - tmp := [(hl) << 4] + [a AND 0x0f], (hl) := tmp,
a := [a AND 0xf0] + [tmp >> 8] => flags
rra 00011111 4 - - + 0 + - 0 X ocf := cf, cf := a.0, a := [a >> 1] + [ocf << 7]
rr R 11001011 00011rrr 8 + + + 0 + P 0 X ocf := cf, cf := R.0, R := [R >> 1] + [ocf << 7]
rr (hl) 11001011 00011110 15 + + + 0 + P 0 X ocf := cf, cf := (hl).0,
(hl) := [(hl) >> 1] + [ocf << 7]
rr (I+D) 11i11101 11001011 dddddddd 00011110 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).0,
(I+D) := [(I+D) >> 1] + [ocf << 7]
rr (I+D)->R 11i11101 11001011 dddddddd 00011rrr 23 + + + 0 + P 0 X ocf := cf, cf := (I+D).0,
(I+D) := R := [(I+D) >> 1] + [ocf << 7]
rrca 00001111 4 - - + 0 + - 0 X cf := a.0, a := [a >> 1] + [cf << 7]
rrc R 11001011 00001rrr 8 + + + 0 + P 0 X cf := R.0, R := [R >> 1] + [cf << 7]
rrc (hl) 11001011 00001110 15 + + + 0 + P 0 X cf := (hl).0, (hl) := [(hl) >> 1] + [cf << 7]
rrc (I+D) 11i11101 11001011 dddddddd 00001110 23 + + + 0 + P 0 X cf := (I+D).0, (I+D) := [(I+D) >> 1] + [cf << 7]
rrc (I+D)->R 11i11101 11001011 dddddddd 00001rrr 23 + + + 0 + P 0 X cf := (I+D).0,
(I+D) := R := [(I+D) >> 1] + [cf << 7]
rrd 11101101 01100111 18 + + + 0 + P 0 - tmp := (hl),
(hl) := [tmp >> 4] + [[a AND 0x0f] << 4],
a := [a AND 0xf0] + [tmp AND 0x0f] => flags
rst S 11sss111 11 - - - - - - - - sp -= 2, (sp) := pc, pc := S
sbc a,R 10011rrr 4 + + + + + V 1 + a -= R + cf
sbc a,J 11i11101 1001110b 8 + + + + + V 1 + a -= J + cf
sbc a,N 11011110 nnnnnnnn 7 + + + + + V 1 + a -= N + cf
sbc a,(hl) 10011110 7 + + + + + V 1 + a -= (hl) + cf
sbc a,(I+D) 11i11101 10011110 dddddddd 19 + + + + + V 1 + a -= (I+D) + cf
sbc hl,Q 11101101 01qq0010 15 + + + + + V 1 + hl -= Q + cf
scf 00110111 4 - - A 0 A - 0 1 nothing else
set B,R 11001011 11bbbrrr 8 - - - - - - - - R := R OR [1 << B]
set B,(hl) 11001011 11bbb110 15 - - - - - - - - (hl) := (hl) OR [1 << B]
set B,(I+D) 11i11101 11001011 dddddddd 11bbb110 23 - - - - - - - - (I+D) := (I+D) OR [1 << B]
set B,(I+D)->R 11i11101 11001011 dddddddd 11bbbrrr 23 - - - - - - - - (I+D) := R := (I+D) OR [1 << B]
sla R 11001011 00100rrr 8 + + + 0 + P 0 X cf := R.7, R := R << 1
sla (hl) 11001011 00100110 15 + + + 0 + P 0 X cf := (hl).7, (hl) := (hl) << 1
sla (I+D) 11i11101 11001011 dddddddd 00100110 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := (I+D) << 1
sla (I+D)->R 11i11101 11001011 dddddddd 00100rrr 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := R := (I+D) << 1
sra R 11001011 00101rrr 8 + + + 0 + P 0 X cf := R.0, R := R >> 1, R.7 := R.6
sra (hl) 11001011 00101110 15 + + + 0 + P 0 X cf := (hl).0, (hl) := (hl) >> 1, (hl).7 := (hl).6
sra (I+D) 11i11101 11001011 dddddddd 00101110 23 + + + 0 + P 0 X cf := (I+D).0,
(I+D) := (I+D) >> 1, (I+D).7 := (I+D).6
sra (I+D)->R 11i11101 11001011 dddddddd 00101rrr 23 + + + 0 + P 0 X cf := (I+D).0,
tmp := (I+D) >> 1, tmp.7 := tmp.6
(I+D) := R := tmp
sll R 11001011 00110rrr 8 + + + 0 + P 0 X cf := R.7, R := [R << 1] + 1
sll (hl) 11001011 00110110 15 + + + 0 + P 0 X cf := (hl).7, (hl) := [(hl) << 1] + 1
sll (I+D) 11i11101 11001011 dddddddd 00110110 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := [(I+D) << 1] + 1
sll (I+D)->R 11i11101 11001011 dddddddd 00110rrr 23 + + + 0 + P 0 X cf := (I+D).7, (I+D) := R := [(I+D) << 1] + 1
srl R 11001011 00111rrr 8 0 + + 0 + P 0 X cf := R.0, R := R >> 1
srl (hl) 11001011 00111110 15 0 + + 0 + P 0 X cf := (hl).0, (hl) := (hl) >> 1
srl (I+D) 11i11101 11001011 dddddddd 00111110 23 0 + + 0 + P 0 X cf := (I+D).0, (I+D) := (I+D) >> 1
srl (I+D)->R 11i11101 11001011 dddddddd 00111rrr 23 0 + + 0 + P 0 X cf := (I+D).0, (I+D) := R := (I+D) >> 1
sub R 10010rrr 4 + + + + + V 1 + a -= R
sub J 11i11101 1001010b 8 + + + + + V 1 + a -= J
sub N 11010110 nnnnnnnn 7 + + + + + V 1 + a -= N
sub (hl) 10010110 7 + + + + + V 1 + a -= (hl)
sub (I+D) 11i11101 10010110 dddddddd 19 + + + + + V 1 + a -= (I+D)
xor R 10101rrr 4 + + + 0 + P 0 0 a := a XOR R
xor J 11i11101 1010110b 8 + + + 0 + P 0 0 a := a XOR J
xor N 11101110 nnnnnnnn 7 + + + 0 + P 0 0 a := a XOR N
xor (hl) 10101110 7 + + + 0 + P 0 0 a := a XOR (hl)
xor (I+D) 11i11101 10101110 dddddddd 19 + + + 0 + P 0 0 a := a XOR (I+D)

Legend

Notation Meaning Respective opcode bits
A 16-bit address or immediate alalalal ahahahah
B Bit number: 0..7 bbb = 000..111
C Condition: nz, z, nc, c, po, pe, p, m ccc = 000, 001, 010, 011, 100, 101, 110, 111
D 8-bit signed relative offset dddddddd
E 16-bit relative address dddddddd (E minus address of next instruction)
I Index register: ix, iy i = 0, 1
J Half index register: ixh, ixl, iyh, iyl (i, b) = (0, 0), (0, 1), (1, 0), (1, 1)
N 8-bit immediate nnnnnnnn
P 16-bit register pair: bc, de, hl, af pp = 00, 01, 10, 11
Q 16-bit register: bc, de, hl/ix/iy, sp qq = 00, 01, 10, 11
R 8-bit general purpose register: a, b, c, d, e, h, l rrr (or sss) = 111, 000, 001, 010, 011, 100, 101
S Restart address: 0x00, 0x08,..., 0x38 sss = 000, 001,..., 111

Flags

  • - = no change
  • + = change by definition (if noted, by the operation marked with '=> flags', otherwise by the only non-single-bit operation):
    • S = sign, bit 7 of the result byte (accumulator or high byte for 16-bit operations)
    • Z = zero, set if the result is zero (8 or 16-bit value)
    • X = undocumented, bit 5 of the result byte
    • H = half-carry, the carry (theoretical bit 4) of the low nibble of the result byte
    • Y = undocumented, bit 3 of the result byte
    • P = parity (set if the result byte has an even number of bits set) or overflow (set when crossing the boundary of the signed range); always specified
    • N = negative, set if the previous operation was a subtraction; always specified
    • C = carry, the theoretical bit 8 of the result byte
  • 0 = always reset
  • 1 = always set
  • X = change described under Effect
  • P = parity (only for the parity flag)
  • V = overflow (only for the parity flag)
  • A = OR with the respective bit of the accumulator
  • C = set if the counter (bc) is nonzero after decrementing

Miscellaneous

  • () = indirection
  • (()) = I/O port
  • [] = operator precedence (to avoid confusion with indirection)
  • E.B = the Bth bit of the value of expression E
  • * = any bit value (0 or 1)
  • memptr = an internal 16-bit register connected to 16-bit operations