Z80 Routines:Math:Square root
Contents
Size Optimization
This version is size optimized, it compares every perfect square against HL until a square that is larger is found. Obviously slower, but does get the job done in only 12 bytes.
;------------------------------- ;Square Root ;Inputs: ;HL = number to be square rooted ;Outputs: ;A = square root sqrt: ld a,$ff ld de,1 sqrtloop: inc a dec e dec de add hl,de jr c,sqrtloop ret
Small and Fast
This code was found on z80 bits and has the advantage of being both faster than all three versions above and smaller than the last two (it runs in under 720 T-states (under 640 if fully unrolled) and takes a mere 29 bytes). On the other hand it takes a somewhat unconventional input... It computes the square root of the 16bit number formed by la and places the result in d.
sqrt_la: ld de, 0040h ; 40h appends "01" to D ld h, d ld b, 7 ; need to clear the carry beforehand or a _loop: sbc hl, de jr nc, $+3 add hl, de ccf rl d rla adc hl, hl rla adc hl, hl djnz _loop sbc hl, de ; optimised last iteration ccf rl d ret
Speed Optimization
This 92 byte version is an optimized unrolled loop taking at most 379 t-states. Each iteration is optimized for its location in the algorithm.
; fast 16 bit isqrt by John Metcalf ; 92 bytes, 344-379 cycles (average 362) ; v2 - saved 3 cycles with a tweak suggested by Russ McNulty ; call with hl = number to square root ; returns a = square root ; corrupts hl, de ; ---------- ld a,h ; 4 ld de,0B0C0h ; 10 add a,e ; 4 jr c,sq7 ; 12 / 7 ld a,h ; 4 ld d,0F0h ; 7 sq7: ; ---------- add a,d ; 4 jr nc,sq6 ; 12 / 7 res 5,d ; 8 db 254 ; 7 sq6: sub d ; 4 sra d ; 8 ; ---------- set 2,d ; 8 add a,d ; 4 jr nc,sq5 ; 12 / 7 res 3,d ; 8 db 254 ; 7 sq5: sub d ; 4 sra d ; 8 ; ---------- inc d ; 4 add a,d ; 4 jr nc,sq4 ; 12 / 7 res 1,d ; 8 db 254 ; 7 sq4: sub d ; 4 sra d ; 8 ld h,a ; 4 ; ---------- add hl,de ; 11 jr nc,sq3 ; 12 / 7 ld e,040h ; 7 db 210 ; 10 sq3: sbc hl,de ; 15 sra d ; 8 ld a,e ; 4 rra ; 4 ; ---------- or 010h ; 7 ld e,a ; 4 add hl,de ; 11 jr nc,sq2 ; 12 / 7 and 0DFh ; 7 db 218 ; 10 sq2: sbc hl,de ; 15 sra d ; 8 rra ; 4 ; ---------- or 04h ; 7 ld e,a ; 4 add hl,de ; 11 jr nc,sq1 ; 12 / 7 and 0F7h ; 7 db 218 ; 10 sq1: sbc hl,de ; 15 sra d ; 8 rra ; 4 ; ---------- inc a ; 4 ld e,a ; 4 add hl,de ; 11 jr nc,sq0 ; 12 / 7 and 0FDh ; 7 sq0: sra d ; 8 rra ; 4 cpl ; 4
Speed Optimization 2
This version uses a slightly different approach to the same algorithm as the one above, but is smaller and faster (this one includes an RET at the end, contributing 10cc and 1 byte):
; fast 16-bit isqrt by Zeda Thomas ;Feel free to use for whatever :) sqrtHL: ;Input: HL ;Output: A is the integer square root of HL ;Destroys: HL,DE (D is actually 0) ;min: 343cc ;max: 380cc ;avg: 361.5cc ;88 bytes ld de,05040h ; 10 ld a,h ; 4 sub e ; 4 jr nc,sq7 ;\ add a,e ; | branch 1: 12cc ld d,16 ; | branch 2: 18cc sq7: ;/ ; ---------- cp d ; 4 jr c,sq6 ;\ sub d ; | branch 1: 12cc set 5,d ; | branch 2: 19cc sq6: ;/ ; ---------- res 4,d ; 8 srl d ; 8 set 2,d ; 8 cp d ; 4 jr c,sq5 ;\ sub d ; | branch 1: 12cc set 3,d ; | branch 2: 19cc sq5: ;/ srl d ; 8 ; ---------- inc a ; 4 sub d ; 4 jr nc,sq4 ;\ dec d ; | branch 1: 12cc add a,d ; | branch 2: 19cc dec d ; | <-- this resets the low bit of D, so `srl d` resets carry. sq4: ;/ srl d ; 8 ld h,a ; 4 ; ---------- ld a,e ; 4 sbc hl,de ; 15 jr nc,sq3 ;\ add hl,de ; | 12cc or 18cc sq3: ;/ ccf ; 4 rra ; 4 srl d ; 8 rra ; 4 ; ---------- ld e,a ; 4 sbc hl,de ; 15 jr c,sq2 ;\ or 20h ; | branch 1: 23cc db 254 ; | <-- start of `cp *` which is 7cc to skip the next byte. sq2: ; | branch 2: 21cc add hl,de ;/ xor 18h ; 7 srl d ; 8 rra ; 4 ; ---------- ld e,a ; 4 sbc hl,de ; 15 jr c,sq1 ;\ or 8 ; | branch 1: 23cc db 254 ; | <-- start of `cp *` which is 7cc to skip the next byte. sq1: ; | branch 2: 21cc add hl,de ;/ xor 6 ; 7 srl d ; 8 rra ; 4 ; ---------- ld e,a ; 4 sbc hl,de ; 15 ;This code would restore the square root ; jr nc,sq0 ;\ ; add hl,de ; | 12cc or 18cc ; sq0: ;/ sbc a,255 ; 7 srl d ; 8 rra ; 4 ret ; 10
Speed Optimization, preserve remainder
This is essentially the same as the algorithm above, but with an optimized final step that preserves the remainder. The remainder is possibly useful for higher precision square roots.
;written by Zeda sqrtHL: ;returns A as the sqrt, HL as the remainder, D = 0 ;min: 352cc ;max: 391cc ;avg: 371.5cc ld de,05040h ; 10 ld a,h ; 4 sub e ; 4 jr nc,sq7 ;\ add a,e ; | branch 1: 12cc ld d,16 ; | branch 2: 18cc sq7: ;/ ; ---------- cp d ; 4 jr c,sq6 ;\ sub d ; | branch 1: 12cc set 5,d ; | branch 2: 19cc sq6: ;/ ; ---------- res 4,d ; 8 srl d ; 8 set 2,d ; 8 cp d ; 4 jr c,sq5 ;\ sub d ; | branch 1: 12cc set 3,d ; | branch 2: 19cc sq5: ;/ srl d ; 8 ; ---------- inc a ; 4 sub d ; 4 jr nc,sq4 ;\ dec d ; | branch 1: 12cc add a,d ; | branch 2: 19cc dec d ; | <-- this resets the low bit of D, so `srl d` resets carry. sq4: ;/ srl d ; 8 ld h,a ; 4 ; ---------- ld a,e ; 4 sbc hl,de ; 15 jr nc,sq3 ;\ add hl,de ; | 12cc or 18cc sq3: ;/ ccf ; 4 rra ; 4 srl d ; 8 rra ; 4 ; ---------- ld e,a ; 4 sbc hl,de ; 15 jr c,sq2 ;\ or 20h ; | branch 1: 23cc db 254 ; | <-- start of `cp *` which is 7cc to skip the next byte. sq2: ; | branch 2: 21cc add hl,de ;/ xor 18h ; 7 srl d ; 8 rra ; 4 ; ---------- ld e,a ; 4 sbc hl,de ; 15 jr c,sq1 ;\ or 8 ; | branch 1: 23cc db 254 ; | <-- start of `cp *` which is 7cc to skip the next byte. sq1: ; | branch 2: 21cc add hl,de ;/ xor 6 ; 7 srl d ; 8 rra ; 4 ; ---------- ld e,a ; 4 sbc hl,de ; 15 jr nc,+_ ; \ add hl,de ; 15 | srl d ; 8 | rra ; 4 | branch 1: 38cc ret ; 10 | branch 2: 40cc _: ; | inc a ; 4 | srl d ; 8 | rra ; 4 | ret ; 10 /
32-bit Square Root (unrolled)
This routine uses a remainder preserving 16-bit integer square root routine as a subroutine.
;NOTE: This uses undocumented instructions `sll` (a.k.a. `slia`) and `ld a,ixh` and `ld a,ixl` sqrtHLIX: ;Input: HLIX ;Output: DE is the sqrt, AHL is the remainder ;speed: 751+6{0,6}+{0,3+{0,18}}+{0,38}+sqrtHL ;min: 1103 ;max: 1237 ;avg: 1165.5 ;166 bytes call sqrtHL ;expects returns A as sqrt, HL as remainder, D = 0 add a,a ld e,a rl d ld a,ixh sll e \ rl d add a,a \ adc hl,hl add a,a \ adc hl,hl sbc hl,de jr nc,+_ add hl,de dec e .db $FE ;start of `cp *` _: inc e sll e \ rl d add a,a \ adc hl,hl add a,a \ adc hl,hl sbc hl,de jr nc,+_ add hl,de dec e .db $FE ;start of `cp *` _: inc e sll e \ rl d add a,a \ adc hl,hl add a,a \ adc hl,hl sbc hl,de jr nc,+_ add hl,de dec e .db $FE ;start of `cp *` _: inc e sll e \ rl d add a,a \ adc hl,hl add a,a \ adc hl,hl sbc hl,de jr nc,+_ add hl,de dec e .db $FE ;start of `cp *` _: inc e ;Now we have four more iterations ;The first two are no problem ld a,ixl sll e \ rl d add a,a \ adc hl,hl add a,a \ adc hl,hl sbc hl,de jr nc,+_ add hl,de dec e .db $FE ;start of `cp *` _: inc e sll e \ rl d add a,a \ adc hl,hl add a,a \ adc hl,hl sbc hl,de jr nc,+_ add hl,de dec e .db $FE ;start of `cp *` _: inc e sqrt32_iter15: ;On the next iteration, HL might temporarily overflow by 1 bit sll e \ rl d ;sla e \ rl d \ inc e add a,a adc hl,hl add a,a adc hl,hl ;This might overflow! jr c,sqrt32_iter15_br0 ; sbc hl,de jr nc,+_ add hl,de dec e jr sqrt32_iter16 sqrt32_iter15_br0: or a sbc hl,de _: inc e ;On the next iteration, HL is allowed to overflow, DE could overflow with our current routine, but it needs to be shifted right at the end, anyways sqrt32_iter16: add a,a ld b,a ;either 0x00 or 0x80 adc hl,hl rla adc hl,hl rla ;AHL - (DE+DE+1) sbc hl,de \ sbc a,b inc e or a sbc hl,de \ sbc a,b ret p add hl,de adc a,b dec e add hl,de adc a,b ret
Other Options
A binary search of a square table would yield much better best case scenarios and the worst case scenarios would be similar to the high school method. However this would also require 512 byte table making it significantly larger than the other routines. Of course the table could also serve as a rapid squaring method.
Credits and Contributions
- James Montelongo
- Milos "baze" Bazelides (or possibly one of the contributor of z80bits)
- John Metcalf (Speed Optimization z80snippets)
- Zeda Thomas (Z80 Optimized Routines)